Document Type

Article

Publication Date

3-3-2022

Publication Title

The Astrophysical Journal Letters

Volume

927

Issue

1

First page number:

1

Last page number:

8

Abstract

Circumbinary gas disks are often observed to be misaligned with the binary orbit, suggesting that planet formation may proceed in a misaligned disk. With n-body simulations, we consider the formation of circumbinary terrestrial planets from a particle disk that is initially misaligned. We find that if terrestrial planets form in this way, in the absence of gas, they can only form close to coplanar or close to polar to the binary orbit. Planets around a circular binary form coplanar while planets around an eccentric binary can form coplanar or polar depending on the initial disk misalignment and the binary eccentricity. The more massive a terrestrial planet is, the more aligned it is (to coplanar or polar) because it has undergone more mergers that lead on average to smaller misalignment angles. Nodal precession of particle disks with very large initial inclinations lead to high mutual inclinations between the particles. This produces high relative velocities between particles that lead to mass ejections that can completely inhibit planet formation. Misaligned terrestrial circumbinary planets may be able to form in the presence of a misaligned circumbinary gas disk that may help to nodally align the particle orbits and maintain the inclination of the planets during their formation.

Keywords

Binary Stars; Extrasolar rocky planets; Planet formation; Exoplanet Formation

Disciplines

Stars, Interstellar Medium and the Galaxy

File Format

PDF

File Size

957 KB

Language

English

Rights

IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

UNLV article access

Search your library

Share

COinS