Award Date

5-14-2021

Degree Type

Doctoral Project

Degree Name

Doctor of Physical Therapy (DPT)

Department

Physical Therapy

Advisor 1

Hui-Ting Shih

First Committee Member

Daniel Young, Ph.D

Second Committee Member

Merrill Landers, Ph.D

Number of Pages

35

Abstract

Tripping is a common cause of falls across different age populations particularly in older adults. Concerns regarding the validity of simulated-fall research protocols reside in the current literature. The purpose of this study was to develop a novel treadmill-based tripping protocol that allowed researchers to deliver unanticipated tripping perturbations during walking with a high level of timing precision. The protocol utilized a side-by-side split-belt treadmill instrumented with force platforms. Treadmill belt acceleration profiles (two levels of perturbation severity: small perturbation vs large perturbation) were delivered unilaterally when the tripped leg bore 20% of the body weight during early stance. Peak trunk flexion angle during trip recovery was the primary variable used to represent the fall recovery response and likelihood of falls. Test-retest reliability of the fall responses was examined in a group of 10 young participants; validity was examined through differentiation of the fall responses between young and older adults (age 20.9 vs. 57.1 years, n=10 per group). We found that the perturbations were precisely delivered during the early stance phase (10-45 ms after initial contact). Moreover, this protocol elicited excellent reliability of recovery responses during both perturbation severities (ICC=0.944 and 0.911). Older adults exhibited significantly greater peak trunk flexion angle than young adults (p=0.035), indicating the current protocol was valid in differentiating individuals with different levels of fall risks. This novel protocol addressed some of the issues of previous simulated-fall protocols and may be useful as a tool for future fall research and clinical intervention.

Keywords

Trip; Tripping; Perturbation; Gait; Falls; Older adults; Split-belt treadmill; Geriatrics; Balance; Novel protocol

Disciplines

Biomechanics

File Format

pdf

File Size

2930 KB

Degree Grantor

University of Nevada, Las Vegas

Rights

IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/


Included in

Biomechanics Commons

Share

COinS